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Dynamical mechanisms underlying contrast gain control in single neurons
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Recent neurophysiological experiments have revealed that the linear and nonlinear kernels of the transfer
function in sensory neurons are not static. Rather, they are adaptive to the contrast or the variance of time-
varying input stimuli, exhibiting a contrast gain control phenomenon. We investigated the underlying biophysi-
cal causes of this phenomenon by simulating and analyzing the leaky integrate-and-fire and the Hodgkin-
Huxley neuronal models. Our findings indicate that contrast gain control may result from the synergistic
cooperation of the nonlinear dynamics of spike generation and the statistical properties of the stimuli. The
resulting statistics-dependent stimulus threshold is shown to be a key factor underlying the adaptation of
frequency tuning and amplitude gain of a neuron’s transfer function in different stimulus environments.
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I. INTRODUCTION sis to the Hodgkin-HuxleyHH) [15] and leaky integrate-
and-fire(LIF) neuronal model$16] to isolate and elucidate
Adaptation to changes in external stimulus conditions is dhe adaptive mechanism at the level of a single neuron. We
ubiquitous characteristic of information processing in thefound that many of the adaptation phenomena can be found
nervous Systenﬁl]_ Numerous experimenta| S'[Udiéz—l?)] in the behavior of an individual model neuron, and that these
have indicated that the amplitudes of the transfer functions ofdaptations are at least partially controlled by the basic fac-
neurons in the early visual and auditory systems are nd@rs related to the bifurcation dynamics of a spiking neuron.
static, but depend significantly on the overall statistical propJnsofar as these factors are intrinsic to neuronal spike gen-
erties of visual and auditory scenes. Ear|y sensory neuror‘%ration, we believe that intelligent adaptation to statistical
(e'g_’ retinal gang]ion Ceugﬁlave been found to be adaptive context |S a fundamental and universal property of all splklng
to changes in the statistics of stimuli, in terms of both theN€urons in the nervous system.
average light intensity levelsee[3] for a review and the
spatial and temporal contrast or variance in light intensity Il. METHODS
(see[4] for a review. Similar adaptations to stimulus vari- , ) ,
ance have been observed in other temporal parameters, such10 investigate the adaptation of a neuron's temporal re-

as movement velocity or intensity, in blowfly H1 neurons ceptive field to different stimulus conditions, we used a
[5,6] and macaque V1 neurord], as well as in auditory white-noise analysis technique. This method has been used
neurong8]. in recent neurophysiological studies for characterizing the

These phenomena are thought to be mediated by a cofinear anq non'linear components of the transfer functi'o.ns of
trast gain control mechanisfi®] and serve to dynamically neurons in various physiological systef@sl7. The specific
adjust a neuron or a neural system’s output response range ®£thod we used is an advanced Wiener kernel method based
match the range of its input signals, which in turn maximizeso" the Laguerre expansion technidug]. _
coding efficiency{10,6]. A classic example ifight adapta- In this method, the discrete input-output relation of a
tion. When the mean light level is decreased, retinal gangliost@Ple nonlinear time-invariant dynamic system is decom-
cells were found to increase their sensitivity and expand theiP®Sed into the discrete-time \olterra serj@9] with finite-
temporal integration windod,11. In dim or low contrast Mmemory lengthL:
conditions, the temporal scale of the kernels was found to
expand while the gain increas¢d?]. The dilation of the
temporal kernel allows the neuron to integrate more signals
before reporting to the cortex, while the increase in gain
enables the neuron to process weak signals more effectively. XX(t=T)X(t=712) +- -, 1)

Much attention has been focused on the mechanisms un-
derlying these intelligent adaptation behaviors of the nervouwherex(t) is the input data sequencg(t) is the output data
system, but their neural basis is not well understood asequence of the system, aiid the discrete time point in our
present. It is not certain whether the behavior emerges fromase. Volterra kernelghg,hy,h,,...} fully characterize the
a network interaction of neurons or is part of the intrinsicinput-output mapping and constitute a complete and canoni-
properties of an individual neuron. Biophysically, a series ofcal representation of any stable system whose output changes
recent experiment$13] and theoretical studiefl4] sug- infinitesimally in response to an infinitesimal change of the
gested that the contrast gain control phenomenon can kBput signal.hg, the zeroth order kernel, is an offset term,
found in single neurons, and the intrinsic dynamics in spikeusually determined by the mean value of the outpuyt. the
generation may play an important role. first order kernel, is a linear impulse response having a finite

In this paper, we applied numerical simulations and analylength, and higher order kernelg with j=2 characterize

L L

L
YO =ho+ 2 hu(nx(t=1+ X X ha(m,7)

71=0 7p=
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the nonlinearity of the system. When kernels of higher orders 08 32 T T )
are incorporated, the response function of the system can b Amplitude
described more accuratef§9]. . Q400
Expansion of the Volterra kernels on a complete orthogo- 2 -
nal Laguerre basibj(t) transforms Eq(1) into the multino- & 0 o
mial expression
-0.01667
N N N I -0.1500
y(t):C0+2 Cl(j)vj(t)+ 2 E Cz(jl,jz) 0 5 10 15( 2)0 25 30 35 4 8 12 1(6 fo 24 28 32
i=1 j1=1j,=1 © (ms T, (ms
Xv: (v (1)+--- FIG. 1. (a) The first order model kernel and the recovered ker-
117772 nels from the method for=108, 102, 1, and 16, respec-
=f(v1,02,...0),..2), (2) tively. (b) The second order kernel far=1.
where whereV is the membrane potential amd,h and n are the

. gating variables of the Naand K" channelg15], respec-
tively. Ona, 9k, andg, are the maximal values of conduc-
Ui(t):ZO by (7)X(t=1), 3 tance of the sodium, potassium, and leakage currents; and
Vna: Vi, andV, are the corresponding reversal potentials.
wherecg, ¢1(j), c2(j1.j2),... represent the Laguerre expan- The auxiliary functions and the parameter values can be
sion coefficients of the kernél;(t) (note thatco=hy), and  found in [15]. The membrane capacity i8,,=1 uFlcn?.
b;(7) denotes thgth order discrete-time orthonormal La- s(t) is the input stimuluSGWN in our simulation and is

guerre functions, described as
_ J' - s(t)=p+ &), 9)
bj(T):a(‘r*J)/Z(l_a)UZE (_1)k( l:)(:() K
=0 (&(1)=0, (10)
i—kiq_ Nk =
el e (=00 @ (E(t)E(ty) = 0?8t~ t,), (19

wherea (0<a<1) is the Laguerre parameter that describes . .
the asymptotic descent of the kernélgt) [18]. The kernel whe_re_,u is the mean value of the. noise, is the standard.
recovery was performed using thesis computational pack- deviation, andg(t) is the GWN with mean zero and unit
age of the Biomedical Simulations Resource of the UniverStandard deviation. {---) represents the ensemble average
sity of Southern California. In this study, we recover only theOVer the noise distribution.

zeroth, the first, and second order kernels, hg,, h;, and

h,, respectively. . RESULTS

The input signalx(t) is Gaussian white nois€GWN) A. Identification of static kernels
with a fixed, short correlation time(cut frequency . . . ) ) )
=500 Hz) with meanx and standard deviation (or the First, we investigate the input parameter space in which

noise intensityD, 2D = ) as variables. The outpy(t) is a the method works accurately and effectively. We tested the
sequence of binary numbers corresponding to the spikes ge =covery of the static fT‘Ode' kerne_l W'th noise inputs of dif-
erated by the neuronal model at a resolution of 1 ms. TdErent meariw) and variancéo). This is important to estab-

verify the feasibility and accuracy of the method in recover-iSh: @s otherwise it is not certain whether the change exhib-
ing static kernels in the appropriate parameter space ed in the neuronal kernel is due to adaptation or an artifact

tested the method using a model that is composed of a statft€ t0 the testing signals. For the static kerlgeéze Sec. I
linear kernel [K,=sin(mt/z,)exp(~t/n,)] cascaded with a W€ usedK,=sin(m/m)exp(-/n,) and K;=K;xKj, with
static nonlinear kernel,= K/ x K, , whereK/ is the trans- 7a— 7o=10, as the first and second order kernels, respec-

- tively. The input stimulus is drawn from a Gaussian white
pose matrix ofK,). ) SR : .
In the simulation experiment, the model neuron is thehoise _dlstrlbutlon. We mvestlg_ated the range of the standard
Hodgkin-Huxley mode[15], as specified below: deviation (o) of the white noise where the method could
completely and accurately recover the kernels. The recovered
Cr V= — gnamPh(V— V) — gun*(V—Vy) kernelsK; andK, of the model are shown in Figs(al and
1(b). The difference between the model and the recovered
—g(V=V))+s(t), (5) kernels is estimated by a cross-correlation analysis, as shown
in Fig. 2. Figure 2a) shows that, forr<10?, the correlation
m=[m.(V) —m]/7,(V), (6)  coefficient is independent of the value @f and approaches
1, indicating that the first order kernel can be recovered per-
h=[h..(V)—h]/7,(V), (7)  fectly. Adrop in correlation coefficient corresponds to distor-
tion in the recovered kernel. For>10?, the correlation co-
n=[n.(V)—n]/m(V), i=1,...N, (8) efficient decreases rapidly, indicating the limitation of the
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FIG. 2. The correlation coefficient between the model kernels 36
and the recovered first order kerng¢® and second order kernels @
(b) as a function ofo. Amplitude
28
method for larges- where the linear kernel is contaminated 12 (x10%

12 20

by large noise fluctuation. Therefore, we established ¢hat ’g 20 0.91
<1(? is a valid range where the kernel method can be used = ‘
to recover the first order linear kernel. On the other hand, the 0.41
second order kernd{, can be recovered perfectly when
=103, but has problems whea<10 3. This is because -0.096
the nonlinear features of the system cannot be fully excited
by a noise input with small variance. -0.60
Combining the results from Figs(&@ and 2Zb), we con- 28 36
clude that the kernel recovery method can be used stably fol 7, (ms)
noise witho between 10° and 16 for kernels with compa- _
rable temporal scale. Within this range, the recovered kernels FIG- 3. Kernels of the HH neuroia) Input GWN signal, drawn
can be recovered accurately independent of stimuli. Outsig°om & normal distribution with. =0 ando=3. (b) The spike train
this range, the recovered kernels contain considerable distoff the HH neuron in response to the GWN signalan (c) The first
tions. A similar conclusion is obtained for different values of or_der and(d) the second order kernel of the HH neuron for GWN
T, and 7,. The same results can be generated with Koren\—NIth 7=3.
berg’s fast orthogonal algorithfi20].

exceeds 3. Further, with an increasasirthe kernel is found
B. Adaptation of the kernels of the HH model to contract in time(i.e., its peak temporal frequency in-

Next, using this method we investigate the adaptation of 1€85€3 with an increase a0. This change in gain and tem-

the HH model of neurons in response to different stimulusphorf:hsnlﬂﬁure to ma(;tcht d;ffetrhent tnglst? sta]lct[{:;tlcst_lndllcate_s
statistics. A GWN stimulus is used as input, and the resulting 2 1€ MM heuron adapts 1o the Stalistics ot the simulus, n

spike trains generated by the model are used as output. T similar manner to the variance or contrast adaptation ob-
mean of the input was fixed(=0) and the standard devia- S€Tved in electrophysiological experimefit2]. .
tion (o) was varied systematically from 1 to 20A/cm?. To evaluate this adaptation phenomenon systematically,

Figures 2a) and 3b) shows an example of an input signal W& computed the power spectral densiBSD) of the first
(with o=3) and the output of the HH neuron in response toorder kernel recovered from stimuli generated with different
it. We used 200 s of both the input and output data to recove?, as shown in Fig. ). For each PSD, we found that the
the first and second order kernels of the HH neuron by th@eak frequency in the PSDwhich we termed the natural
Laguerre expansion technigighown in Figs. &) and 3d)]. frequency of the kerngls tuned too. Figure 4c) shows that

Interestingly, we found that the kernels recovered usinghe natural frequency of the kerndie) increases almost
GWN with different values ofr are considerably different. linearly with an increase ie, changing from 47 to 66 Hz as
Given that the static kernels can be recovered invariantlyr changes from 1 to 20. The kernel tuning frequency satu-
with these signals, the change exhibited in the kernels isates(stops increasingas o exceeds 20. These findings in-
indicative of the neuron’s adaptation to stimulus statisticsdicate that there is a systematic relationship between the fre-
The change is nonmonotonic: the gain amplitude of the kerquency tuning of a neuron and the variance of the noise
nel increases as varies from 2 to 3, but decreases when stimulus input.
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FIG. 4. Adaptation of kernels to. (a) The first order kernels of FIG. 5. The energg, of the first order kernel as a function of

the HH neuron for noises wittr=2,3,10, respectively, in the case (a) o2 for different values ofu and(b) u for different values ofr2.
of u=0. (b) The power spectral density functions of the first order The energyE, of the second order kernel as a function@fo? for
kernels for the three sets of nois¢s). The natural frequency of the different values ofux and(d) u for different values ofs?.
first kernel as a function oé, computed as the frequency of the
maximum PSD.(d) The energyE, of the first order kernel as a first and second order kernels change withfor different
function of o for u=0. fixed o5. It can be observed that for small E increases
rapidly with u, while for largero E increases very slowly.
The PSD peak for the kernel recovered from a noiseTlhis suggests that, when the input variance is small, the neu-
stimulus generated witr= 3 is much higher than those gen- ron is sensitive to the stimulus, but as the input variance
erated with ao of 2 or 10. This higher gain in the PSD of the increases, it loses its stimulus sensitivity and is controlled
kernel allows more spectral energy to pass throughdfor instead by the stochasticity of the stimulus.
=3 signals. To quantify this phenomenon, we computed the The above results demonstrate that the linear kenpel
total energy of the transfer function for different valuessof ~ and the nonlinear kerndl, are adaptive and tuned to statis-
tics (o and u) of the stimulus. The neuron exhibits tuning to
o, and this tuning is controlled by the value g@f in its
E= Zo [P(F)I/F, (12 relation to the stimulus current thresholdd). This indicates
that the adaptation phenomenon is intimately connected to
the bifurcation dynamics in spike generation, which we will
investigate further through analytical methods in the next
section.

F-1

whereP(f) is the power spectral density of the first or sec-
ond order kernelf is the index of frequency an# is the
index of the highest frequency in the PSD. Figu(d)&hows
thatE,, first increases and then decreases with an increase in
o, reaching a maximum at= 3. This underscores the non-
monotonicity of the relation between frequency tuning and The above simulation results suggest that the contrast gain
o, demonstrating that there is a particular set of intermediateontrol observed in neurophysiological experiments might
stimulus statistics that can drive the neuron in the maximallyoriginate from the basic dynamical mechanism underlying
sensitive state. spike generation. To investigate the critical determining fac-

Next, we investigate the sensitivity of this adaptation totors in the spike generation dynamics that contribute to ad-
the mean of the input noise signals. Figur@Sshows the aptation, we analyzed the simplest neuronal model, called
energy of the first order kernéle.,E, as a function obr for  the leaky integrate-and-fire model. The HH neuron model is
w ranges from 0 to B We found that there exists a critical characterized by many variables and complex dynamics,
value .~ 6.2, below whichE,, shows a global maximum at making it difficult to isolate the essential features. The LIF
an intermediater, and above whicli, decreases logarith- model captures two main properties of an excitable neuron:
mically with an increase irr,. The same phenomenon is all-or-none firing behavior related to bifurcation, and a re-
observed also in the second order kerffely. 5c)]. This  fractory period during which the neuron recovers its excit-
critical u. is the stimulus current threshold for generating aability. We seek to understand which of these features are
spike, corresponding to the HH neuron’s saddle-node bifurkey to the adaptation phenomenon. The LIF model is similar
cation point[21]. Figures %b) and §d) show howE of the  to aRC circuit in physics and is given by

C. Analytical results based on LIF model
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dVidt=—V/r,+u+aé(t) if V()<Vy, (13

V(tH)=V, if V(t7)=Vy, (14
wherer,,=RC is the time constant of the neuron with resis-
tanceR and capacitanc€. Here,Vy=0 mV, V{,=12 mV,
m=10 ms,R=3 M, C=3.33 nF, and the absolute refrac-
tory period 7,.=4 ms. i is the mean value of the Gaussian
white noise.

We derive below the input-output relationship of the neu-
ron as a function ofr and . and examine how the sensitivity
of the neuron changes as a functioncofind u. The linear
part of the modeJEq. (13)] combines with the nonlinear part
[Eq. (14)] to create a saddle-node bifurcation point.at.
Wheno=0, the membrane potenti&l(t) relaxes to a stable
equilibrium [i.e., the resting statg.7 [16] for subthreshold
stimulus w<u.=Vy/R)]. When u=pu., the membrane

potential will cross the threshold, generating a spike. For a

GWN input stimulus witha # 0, the evolution of the prob-
ability distribution of the membrane potentMlis given by a

PHYSICAL REVIEW E 68, 011901 (2003
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well-known stochastic diffusion process, also called the

Ornstein-Uhlenbeck process given by Ed5), which is a
type of transformed Brownian motion process. The probabil
ity distribution of a neuron’s voltage potentidl at timet is
given by a probability density functioR(V,t) that satisfies
the Fokker-Planck equatidi6,22:

with an absorbing boundary conditié?(Vy,,t) =0 [22] and
satisfying the following normalization:

JP(V,t) 1 ,@P(V,t) 4

ot 2 aV?

V
evii U T) P(v.t>},

; (15

V,

fﬁthP(V,t)dV:l. (16)

In stationary conditions, the mean firing spike ratg, (or

FIG. 6. The mean firing rate as a function(af u for variouso
and(b) o for variousu. The static incremental sensitivigyrepre-

sented by the integral of the first order kernel, as a functiofc)os
for variousu and(d) u for variouso.

spectively. erff) is the error function. The analytical input-
output relations of as a function ofu and o are plotted in
Figs. §a) and @b). Figure &a) shows that the firing rate
increases roughly sigmoidally witp for small o, but lin-
early with u for larger o.

The critical point where =0, at which the neuron starts
to fire, shifts to the left agr increaseqi.e., the bifurcation
point has moved to the lgftsuggesting that the neuron be-
comes more sensitive to the lower mean current input. The
shifting of the bifurcation point induced by noise may be a
critical factor underlying kernel adaptation in a neuron. In
addition, we observe that the slope of the u curve is
sharper for smalé- and decreases with an increaserinthis

the flux of realizations crossing the threshold, is given by thendicates that the neuron is more sensitive to a change in

1

P(V t)——crzm
2

Vv

1 ,0P
s 27w

m

flux
Vin

&

The time-independent stationary firing ratean then be
derived from the above equations [d$,22]

-/

with a= 7,(u— Vi /R) o1, andb= 7ul o7, Wherer,

fren 3o

th

Treft \/;Tmfb exp(xz)[l—erf(x)]dx) ,
(18

weak stimulus in low signal variance than in high signal
variance, corresponding to a change in sensitivity in the
transfer function as a function af. The flattening of the
slope with a high value of also means that the exact loca-
tion of the bifurcation point has become ambiguous, imply-
ing that the neuron’s spike generation might become more
stochastic. Figure (6) provides another view of the data in
Fig. 6(a). It shows the dependency of the firing rate @mat
different fixed values of.. For all values ofu, the firing rate

(r) first increases witlr and then saturates at large values of
o, exhibiting a tuning to botlr and .

To investigate how the sensitivity slope of the input-
output relationshigtransfer functiop changes with the sta-
tistical parameters, we perform the following analysis. First,
we linearly approximate the input-output relationship and

Tref, @nd 7, are the mean firing rate, the absolute refractorywrite the input signas(t) and output mean firing ratgt) of
period, and the membrane time constant of the neuron, réhe neuron as
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% some preferred information with maximum efficiency. A
r(so+ 55):fo(50)+53J0 h(r;se)d, (19 population of neurons tuned to different valuescomight
provide an optimal coverage to the stimulus space. This

whereh is the first order kernel. The local slogeof the — ©-dependent resonance is consistent with the earlier ob-
input-output curve, which is called the static incrementaiServed phenomena in many nonlinear systems, i.e., stochastic

sensitivity [23], can be shown to be the integral of the first resonanceSR) [24] and coherence resonan@@R) [25]. A
order kernel, common feature of SR and CR is that the coherence measure

or signal to noise ratio in the output of a nonlinear threshold

dr o system can be maximized by the additional noise with the
P fo h(7;p)d7. (200 optimal noise variance. Work on this issue has implicated the
threshold condition in nonlinear system as the key underly-

Combining Eqs(18) and(20), we can express the incremen- ing factor[24,25. Thus, our results show that threshold bi-
tal sensitivity in terms ofr and w. The results are plotted in furcation dynamics is likely the key factor underlying neu-
Figs. 6c) and d). Figure Gc) shows that, foru<u.=6, ronal adaptation.
the incremental sensitivity shows a global maximum at an
intermediater. The exact for the maximum is a function of
u. For u=pu.=6, the incremental sensitivity decreases
monotonically as a function af. u.=6 serves as a bound- Adaptation to the statistics of the stimulus has been ob-
ary that divides the system’s behaviors into two differentserved in many sensory systems. The global statistics of the
dynamical regimes, comparable to the dependency of thstimulus appear to play an important role in modifying the
kernel gain energy of the HH model as a functiorocdindy ~ transfer function of the neuron to optimize information en-
as shown in Fig. &). coding [26]. The transfer function of a neuron, sometimes
Figure &d) shows the relationships between incrementalcalled the receptive field in sensory systems, is therefore not
sensitivity p and u for different values ofo. For smallec  simply a property of the neuron alone, but rather an emergent
(e.g.,0=0.1), the sensitivity curve shows a very sharp peakproperty that arises from synergistic interaction between the
near the current thresholifurcation poinj, u.=6. As o neuron and its sensory environm¢ga¥].
increases, the corresponding peak shifts to the left and be- In this paper, we applied system identification techniques
comes more smooth. This implies that for stimuli with largeto study the kernel adaptation of the HH model and per-
variance the bifurcation point of the system shifts left andformed a theoretical analysis on the LIF model to investigate
becomes more ambiguous, consistent with what we saw ithe possible dynamical origin of neuronal adaptation. We
Fig. 6(@). The decrease of the current threshold makes théound that the amplitude and energy of the linear and non-
neuron more sensitive to the input signal, while the ambigulinear kernels of the neuronal model can change according to
ity in its location introduces randomness in spike generationthe statistics of the input stimuli, displaying a statistics-
Therefore, there is a trade-off between an increase in sensilependent gain control phenomenon. In particular, for mean
tivity and an increase in randomness. There exists a value afalues of the stimulus less than the stimulus threshglg |
o at which this trade-off is maximum in signal to noise ratio, the transfer function exhibits maximum gain at some inter-
i.e., where the neuron is most sensitive to the input signal imediate stimulus variance, showing a tuning to stimulus
the context of noise. Thus, a certain level of variance in thesariance. The time scale of the model kernel contracts with
stimulus input is most synergistic with the nonlinear thresh-an increase i or o, consistent with experimental observa-
old dynamics of the neuron, driving the neuron to fire moretions in variance adaptatiof®,12]. These findings suggest
quasiregularly, resulting in a maximal gain in transfer func-that the variance adaptation observed originates from the
tion. That is the underlying reason for the contrast or vari-nonlinear threshold dynamics of spike generation. Analysis
ance tuning phenomenon. The change in gain amplitude aif a LIF model reveals that the change of effective stimulus
the kernels in experiments is a result of the shift in the efthreshold in various statistical stimulus environments is the
fective bifurcation point of the system induced by variationskey factor underlying variance or contrast gain control. Re-
in the stimulus. We have experimented with a variety of val-cent experimentgl3] on cortical neurons strongly supported
ues of the LIF model parameters, suchras=RC, vy,, and  this conclusion, finding that the gain modulation commonly
we found that, while the peak location and the curve shapseenin vivo may arise from varying levels of background
can change quantitatively with these parameters, the bas&ynaptic noisy input.
adaptation phenomenon is qualitatively similar to what we Given that the LIF model captures the basic features of
have shown here. almost all excitable neurons, our results suggest that variance
The incremental sensitivity maximized at an intermediateor contrast gain control might be a universal mechanism em-
o [Fig. 6(c)] in the o-tuning curve is of significance because bodied in all spiking neurons for maximizing information
it suggests that the nonlinear dynamics of a neuron resona@ncoding and transmission. When neurons are embedded in a
with a particular set of stimulus statistics. This might allow it network, a more sophisticated intelligent adaptation might
to encode the stimulus of its preferred statistics with maxi-emerge to optimize the function of the neural system. The
mum efficiency. The synergistic cooperation between the sigfindings provided in this paper reveal that the basic mecha-
nal variance and the neuron’s dynamics allows the neuron toism of contrast gain control is already embodied in a single
absorb the energy of the stimulus environment and to procesguron.

IV. DISCUSSION AND CONCLUSION
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